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Abstract

Generative Adversarial Networks (GANs) are a powerful machine learning technique

with exciting applications in economic research.

This presentation starts with the exciting growing literature from intersection of

machine learning (ML) and economics.

We'll review a foundation in core ML concepts, followed by a gentle introduction to

deep learning, a powerful subfield.

We'll then delve into Generative Adversarial Networks (GANs), a fascinating deep

learning technique.

Finally, the presentation will discuss the potential applications of GANs that can

contribute to new economic insights and advancements.



Presentation Outline

« Recent Applications of Machine Learning in Economics
* Some Basics of Machine Learning

* Gentle Overview of Deep Learning

« Generative Adversarial Networks (GANSs)

« Potential Uses of GANSs in Economics
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Figure 1: The number of publications over five years (between 2018-2022) in the leading economics journals that use
ML. The data includes articles from the following ten journals: American Economic Review (AER), Econometrica,
Journal of Economic Perspectives (JEP), Journal of Monetary Economics (JME), Journal of Political Economy (JPE),
Journal of Econometrics (JoE), Quarterly Journal of Economics (QJE), Review of Economic Studies (RES), American
Economic Journal (AJE): Macroeconomics and Microeconomics. The relevant papers are identified using the following
search terms: Machine learning, Ensemble learning, Deep learning, Statistical learning, Reinforcement learning, and

Natural language processing.

Desai, A., 2023. Machine Learning for Economics Research: When What and How?. Available at arXiv:2304.00086.
https://arxiv.org/abs/2304.00086
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Schematic diagram representing the relative merits of ML and
traditional econometric methods

Econometrics

Accuracy gain

Data complexity

Desai, A., 2023. Machine Learning for Economics Research: When What and How?. Available at arXiv:2304.00086.
https://arxiv.org/abs/2304.00086
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models: Evidence from the Japan Electric Power Exchange (JEPX) market
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Annual Review of Economics

Machine Learning Methods
That Economists Should
Know About

Susan Athey'*? and Guido W. Imbens'***

!Graduate School of Business, Stanford University, Stanford, California 94305, USA;
email: athey@stanford.edu, imbens@stanford.edu

2Stanford Institute for Economic Policy Research, Stanford University, Stanford,
California 94305, USA

3National Bureau of Economic Research, Cambridge, Massachusetts 02138, USA

4]:)::p:al'r_rm:nl: of Economics, Stanford University, Stanford, California 94305, USA

Athey, S. and Imbens, G.W., 2019. Machine learning methods that economists should know about. Annual Review of Economics, 11,
pp.685-725. 9
https://www.annualreviews.org/doi/pdf/10.1146/annurev-economics-080217-053433
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Journal of Monetary Economics
Volume 122, September 2021, Pages 76-101

-

ELSEVIER

bl

Deep learning for solving dynamic
economic models.

Lilia Maliar 9, Serquei Maliar® 2 &, Pablo Winant ©
¢ The Graduate Center, City University of New York, CEPR, and Hoover

Institution, Stanford University

Santa Clara University

¢ ESCP Business School and CREST/Ecole Polytechnique

Highlights

We introduce a deep learning (DL) method that solves dynamic economic
models by casting them into nonlinear regression equations.

We derive such equations for three fundamental objects of economic
dynamics - lifetime reward, Bellman equation and Euler equation.

We propose all-in-one integration technique that facilitates construction
of high-dimensional expectation functions.

We use deep neural network to deal with multicollinearity and to perform
model reduction.

Taken together, these techniques enable us to solve economic models with
thousands of state variables, such as Krusell and Smith (1998) model.

We provide a TensorFlow code that accommodates a variety of
applications.

https://www.sciencedirect.com/science/article/abs/pii/S0304393221000799 10
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RESEARCH ARTICLE o

How is machine learning useful for macroeconomic
forecasting?

Philippe Goulet Coulombe & Maxime Leroux, Dalibor Stevanovic B4, Stéphane Surprenant

First published: 13 May 2022 | https://doi.org/10.1002/jae.2910 | Citations: 11

https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2910

Summary

We move beyond Is Machine Learning Useful for Macroeconomic Forecasting? by adding the
how. The current forecasting literature has focused on matching specific variables and
horizons with a particularly successful algorithm. To the contrary, we study the
usefulness of the underlying features driving ML gains over standard macroeconometric
methods. We distinguish four so-called features (nonlinearities, regularization, cross-
validation, and alternative loss function) and study their behavior in both the data-rich
and data-poor environments. To do so, we design experiments that allow to identify the
“treatment” effects of interest. We conclude that (i) nonlinearity is the true game changer
for macroeconomic prediction, (ii) the standard factor model remains the best
regularization, (iii) K-fold cross-validation is the best practice, and (iv) the L, is preferred
to the &insensitive in-sample loss. The forecasting gains of nonlinear techniques are
associated with high macroeconomic uncertainty, financial stress and housing bubble
bursts. Furthermore, ML nonlinearities are helpful when considering density forecasts.
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European Review of Agricultural Economics

European Review of Agricultural Economics Vol 47 (3) (2020) pp. 849-892 Abst rFa Ct
doi:10.1093/erae/jbz033
Advance Access Publication 21 August 2019

Machine learning in agricultural and
applied economics

This review presents machine learning (ML) approaches from an
applied economist’s perspective. We first introduce the key ML
methods drawing connections to econometric practice. We then
identify current limitations of the economeftric and simulation model

Hugo Storm'*, Kathy Baylis* and Thomas Heckelei' . _ ' . _
toolbox in applied economics and explore potential solutions

"Institute for Food and Resource Economics, University of Bonn,

Germany; *Agricultural and Consumer Economics, University of Illinois, afforded by ML. We dive into cases such as inflexible functional

usA forms, unstructured data sources and large numbers of explanatory
variables in both prediction and causal analysis, and highlight the
challenges of complex simulation models. Finally, we argue that
economists have a vital role in addressing the shortcomings of ML

when used for quantitative economic analysis.

https://academic.oup.com/erae/article/47/3/849/5552525 12
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Energy Economics Highlights
Volume 81, June 2019, Pages 709-727

ELSEVIER .

=

First comprehensive review of machine learning in energy economics

Machine ]ea[‘ning n energy economics and Identified more than than 120 papers published in this area

finance: A review * Support-Vector-Machine and Artificial Neural Networks found to be the

Hamed Ghoddusi ® 9, ,Germdn G. Creamer ® &, Nima Rafizadeh ® = most popular methods

9 School of Business, Stevens Institute of Technology, Hoboken, NJ, USA * Crude oil and electricity price predictions are the two most frequent

b - - -
Independent Researcher, Tehran, Iran domain ElppllCHtlDl'lS.

» Opportunities to apply ML techniques to energy-related volatility
prediction, social network analysis, and text processing

https://www.sciencedirect.com/science/article/abs/pii/S0140988319301513?via%3Dihub 13
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Econometrics

Econometrics Journal (2018), volume 21, pp. C1-C68.
doi: 10.1111/ectj.12097

Double/debiased machine learning for treatment
and structural parameters

VICTOR CHERNOZHUKOV', DENIS CHETVERIKOV', MERT DEMIRER/,
ESTHER DUFLO', CHRISTIAN HANSENS, WHITNEY NEWEY'
AND JAMES ROBINS/
fMassachusetts Institute of Technology, 50 Memorial Drive, Cambridge, MA 02139, USA.
E-mail: vchern@mit.edu, mdemirer@mit.edu, duflo@mit.edu, wnewey@mit.edu

YUniversity of California Los Angeles, 315 Portola Plaza, Los Angeles, CA 90095, USA.
E-mail: chetverikov@econ.ucla.edu

SUniversity of Chicago, 5807 S. Woodlawn Ave., Chicago, IL 60637, USA.
E-mail: chansenl@chicagobooth.edu

| Harvard University, 677 Huntington Avenue, Boston, MA 02115, USA.
E-mail: robins@hsph.harvard.edu

First version received: October 2016; final version accepted: June 2017

https://academic.oup.com/ectj/article/21/1/C1/5056401

Cited by 2625 (as of 3/10/2024)

Double/Debiased Machine Learning (DML) offers a
solution to the challenge of estimating low-
dimensional parameters (8y) in the presence of
high-dimensional nuisance parameters (no) that
traditional methods struggle with. DML achieves
this by employing two key techniques: Neyman-
orthogonal moments/scores and cross-fitting.
This approach mitigates the bias introduced by
regularization and overfitting in standard machine
learning methods. As a result, DML delivers
accurate and reliable point estimates with
theoretical guarantees of approximately unbiased
and normally distributed, allowing for valid
statistical inference. The framework is flexible and
can be applied with various modern machine
learning algorithms such as deep neural networks.
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Among many others

Google Scholar  "Machine Learning” "Economics” = Google Scholar  "Machine Learning” "Economics”

fbout 2,110,000 results (0.06 sec) Articles About 15,900 results (0.0§ sec)
Law & Economics at sixty: Mapping the field with bibliometric and machine
learning tools

E Kantorowicz-Reznichenko. .. - Journal of Economic ..., 2024 - Wiley Online Library

mmu Machine learning in energy economics and finance: A review
H Ghoddusi, GG Creamer, N Rafizadeh - Energy Economics, 2019 - Elsevier

Since 2023 ... Machine learning (ML) is generating new opportunities for innovative research in energy . . : -
Since 2020 economics ... We critically review the burgeoning literature dedicated to Energy Economics!/... Since 2020 .. We demonstrate that Law & Economics shifted from more theory driven work to empirical ...
Cust ¥r Save ©D Cite Cited by 335 Related articles Al 9 versions Custom range Law & Economics field tends to be dominated by authors affiliated with economics departments. ..
Heiom range... Yy Save P9 Cite Related articles

The impact of machine learning on economics Sort by rel
Sortby relevance o ey - The economics of ariificial intelligence: An agenda, 2018 - degruyter.com OBy TeIsvance - Computer and Mathematical Modeling: Translational Research and Economics
Sort by date B~ ) _ ) .. . Sort by date in Clinical Diagnostics

... | believe that machine learning (ML) will have a dramatic impact on the field of economics ... ) o ) ) .

Next, | review some applications of ML in economics where ML can be used off the shelf: the ... J Wang, Y Qin, W Si, L Li - Electronics Science Technology and ...., 2024 - ojs.as-pub.com
Any type ¥ Save U9 Cite Cited by 890 Related articles Al 16 versions Any type ... One way that machine learning can help fo overcome these ... gene expression, and machine
Review articles Review articles learning models to predict drug ... phase in which a machine-learning approach yields a list of ...

¥¢r Save 99 Cite Related articles 9

Note: While these numbers provide initial insights, further investigation is necessary for conclusive interpretation from
the data's limitations and representation.
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AMERICAN
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Home > ASSA Annual Meeting » AEA Continuing Education
» 2023 Continuing Education Webcasts

2023 Continuing Education Webcasts

January 8-10, 2023 New Orleans, Lousiana

The AEA's 2023 Continuing Education Program was held on January 8-10, 2023, at the
Sheraton New Orleans Hotel.

Machine Learning and Big Data—Melissa Dell and
Matthew Harding

Webcasts Day One:
Part1

Webcasts Day Two:
Part2| Part3 | Part4 | Part5| Part6

Webcasts Day Three:
Part7 | Part 8 | Part9

Melissa Dell | Harvard University

Melissa Dell is the Andrew E. Furer Professor of
Economics at Harvard University. She is the 2020
recipient of the John Bates Clark Medal, awarded each
year to an American economist under the age of forty
who is judged to have made the most significant
contribution to economic thought and knowledge. In
2018, The Economist named her one of the decade’s eight
best young economists, and in 2014 she was named by the
IMF as the youngest of 25 economists under the age of 45
shaping thought about the global economy. Her research
focuses on economic growth and political economy. She has examined the factors
leading to the persistence of poverty and prosperity in the long run, the effects of
trade-induced job loss on crime, the impacts of U.S. foreign intervention, and the effects

https://www.aeaweb.org/conference/cont-ed/2023-webcasts

of weather on economic growth. She has also developed deep learning powered
methods for curating social science data at scale, released in the open-source package
Layout Parser. This work supports many of her current projects, which rely on
digitizing historical sources far too large for manual digitization. Professor Dell is a
senior scholar at the Harvard Academy for Area and International Studies and a
research associate at the National Bureau of Economic Research. She received an AB in
Economics from Harvard in 2005, an MPhil in Economics from Oxford in 2007, and a
PhD in Economics from MIT in 2012. Before joining the Harvard Economics
department in 2014, she was a Junior Fellow at the Harvard Society of Fellows.

Matthew Harding | University of California, Irvine

Matthew Harding is a Professor of Economics and
Statistics at the University of California, Irvine. He is an
Econometrician and Data Scientist who develops
techniques at the intersection of Machine Learning and
Econometrics to answer Big Data questions related to
individual and firm behavior in areas such as energy,
consumer finance, and health. He directs the Deep Data
Lab which conducts research into cutting edge methods,
inspired by recent advances in machine learning, for the
analysis of “deep data”, large and information-rich data T )
sets derived from many seemingly unrelated sources to provide novel economic
insights to economics and business. Professor Harding focuses on developing triple-

win strategies that balance individual and corporate welfare with broader policy and
societal goals while maintaining a core focus on evaluating causal determinants. He has
extensive experience working with industry leaders and regulators and advised major
companies, agencies, and organizations. He is a Co-Founder of FASTLab.Global, a non-
profit thought academy aimed at providing research and mentoring opportunities in
areas of fair access and sustainable technologies for underprivileged minorities.
Professor Harding is also a co-author of the best-selling textbook Modern Business
Analytics: Practical Data Science for Decision-Making published by McGraw-Hill. He
received a BA in Philosophy and Economics from University College London, an MPhil
in Economics from the University of Oxford, and a PhD in Economics from MIT. Before
joining UC Irvine, he taught at Stanford University and Duke University.

16
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Announcing the First Conferenceina s«
New Interdisciplinary Series: The 2024 ESIF
Economics and AI+ML Meeting

The 2024 ESIF Economics and Al+ML Meeting
August 13 - 14, 2024,
Cornell University, Ithaca, United States

The Econometric Society is pleased to announce an interdisciplinary conference on Economics and
Al+ML, the first in a series of Econometric Society Interdisciplinary Frontiers (ESIF) conferences.

The purpose of the Economics and Al+ML Meeting, which will be held at Cornell University, in Ithaca NY
(USA) on August 13-14, 2024, is to foster interaction of ideas and methodologies from the areas of
Computer Science and Economics (broadly defined, but with emphasis on Al and ML). The conference
will feature keynote lectures and parallel sessions, bringing together scholars from both fields.

The ESIF series more broadly will promote interdisciplinary approaches to important economic issues
and global challenges, with each conference hosted or co-hosted by various regions of the Econometric
Society. The 2024 ESIF Economics and Al+ML Meeting is hosted by the North America region.

Important Dates for the 2024 ESIF Economics and Al+ML Meeting

Submissions open: December 20, 2023

Paper Submission Period: December 20, 2023 - February 25, 2024
Decision Notification Deadline: April 21, 2024

Registration Period (for presenters): April 21, 2024 — May 4, 2024
Preliminary Program Announcement: May 25, 2024

Keynote Speakers

Susan Athey (Stanford University)

David Blei (Columbia University)

Avrim Blum (Toyota Technological Institute at Chicago)
Jesus Fernandez-Villaverde (University of Pennsylvania)
Michael I. Jordan (University of California, Berkeley)
Whitney Newey (MIT)

17
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Lyn Hogan, Executive Director Sat, Mar 9, 2024 at
<announcement@econometricsociety.org> 3:19 AM
Reply-To: announcement@econometricsociety.org

To: TJ <theepakorn@econ.tu.ac.th>

i Ha:*;f mm_ftfea‘fhg ;h‘{e;":“? ‘::-‘W I °nlvz“fbf°:w-b k https://www.econometricsociety.org/regional-
' activities/schedule/2024/08/13/2024-ESIFEconomics-and-AlIML -
Meeting#ai-replication-game

The Econometric Society

An International Society for the Advancement ef Economic Theory
in its Relation to Statistics and Mathematics

Connor. Skynet and Cyborg teams will have access to (commercially available) LLM
models to conduct their work; John Connor teams of course rely only on

March 8, 2024 www.econometricsociety.org . . . .
unaugmented human skills. Each team consists of 3 members with similar research
interests and varying skill levels. Teams will be asked to check for coding errors and

Al Replication Game @ Cornell University 2024 conduct a robustness reproduction, which is the ability to duplicate the results of a

August 12, 2024 prior study using the same data but different procedures as were used by the

original investigator.

We are pleased to announce that the Institute for Replication (14R) and the Labor

Dynamics Institute @_Cornell will be organizing the Al Replication Game @_Cornell During the event, participants are expected to read the paper and familiarize

2024 on August 12, 2024, in Ithaca, NY. The event will take place on the day themselves with the replication package. Teams then will work together to check for

before the start of the 2024 ESIF Economics and Al+ML Meeting (ESIF-AIML2024). coding errors and conduct sensitivity analysis. No work is conducted before/after the
For more information and to register for the Al Replication Game, please see the event other than answering a short survey.

information below. To separately register for the 2024 ESIF Economics and Al+ML

Meeting (ESIF-AIML2024), please see the event page. Schedule: The Al Replication Game @_Cornell University will start at 8:45 AM local

time, and end at 4PM local time.
The Al RG is organized by 4R and the Labor Dynamics Institute @ Cornell. The Al

Replication Game @_Cornell University is a one-day event on August 12, 2024 that
brings researchers together to collaborate on reproducing quantitative papers
published in high-ranking social science journals. Replication is a crucial aspect of
scientific research, ensuring that results are reliable and reproducible. By
participating in the Replication Games, you will not only contribute to the integrity of
research in your field, but also have the opportunity to network with fellow
researchers and develop your coding skills. Replication Games are open to faculty-
level researchers, post-docs, and graduate students.

Please register here: before July 15th, 2024.

The Econometric Society

www.econometricsociety.org

Participation: Researchers participating in the Al Replication Game @ Cornell You're receiving this newsletter because of your interest in The Econometric Society. ll 8
University will be randomly assigned to one of three teams: Skynet, Cyborg or John Not interested anymore? Unsubscribe Instantly.
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Some Basics of Machine Learning

What is Machine Learning ?

Machine Learning
A relatively new approach to data analytics, which places itself in
the intersection between statistics, computer science, and artificial
intelligence

ML objective

Turning information into knowledge and value by “letting the
data speak”

Giovanni Cerulli. A review of machine learning commands in Stata: Performance and usability evaluation. UK Stata Conference 2023.
https://www.stata.com/meeting/uk23/slides/UK23 Cerulli.pdf
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Some Basics of Machine Learning

Teaching computers how to learn a task directly from raw data

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13

2
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Some Basics of Machine Learning
My personal view about the universe

/ Statistics

Arificial Infelligence

Machine Learning

Neural networks

Deep Learning

\_

/

Adapted from
https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf
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Some Basics of Machine Learning

Limiting Based on
philosophy

Mostly focused on
than

Targeted to
Big Data

Giovanni Cerulli. A review of machine learning commands in Stata: Performance and usability evaluation. UK Stata Conference 2023.
https://www.stata.com/meeting/uk23/slides/UK23 Cerulli.pdf
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Some Basics of Machine Learning

-m

Model-free
model selection classification

Giovanni Cerulli. A review of machine learning commands in Stata: Performance and usability evaluation. UK Stata Conference 2023.
https://www.stata.com/meeting/uk23/slides/UK23 Cerulli.pdf
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Some Basics of Machine Learning

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a function to map x->y  Goal: Learn some underlying

hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Some Basics of Machine Learning

Prediction in a Stable

Environment

Goal: estimate u(x) = E[Y|X = x] and
minimize MSE in a new dataset where only
X is observed

” 2
MSE:  X;(¥: — A(X1))
No matter how complex the model, the
output, the prediction, is a single number

Can hold out a test set and evaluate the
performance of a model

Ground truth is observed in a test set

Only assumptions required: independent
observations, and joint distribution of (¥,X)
same in test set as in training set

Note: minimizing MSE entails bias-variance
tradeoff, and always accept some bias

Idea: if estimator too sensitive to current
dataset, then procedure will be variable
across datasets

Models are very rich, and overfitting is a real
concern, so approaches to control overfit
necessary

Idea of ML algorithms
Consider a family of models

Use the data to select among the models or
choose tuning parameters
Common approach: cross-validation

Break data into 10 folds

Estimate on 9/10 of data, estimate MSE on last tenth,
for each of a grid of tuning parameters

Choose the parameters that minimize MSE

ML works well because you can accurately
evaluate performance without add’l
assumptions

Your robotic research assistant then tests
many models to see what performs best

Susan Athey: Machine Learning and Economics: An Introduction (Machine Learning & Causal Inference: A Short Course, 2021)

https://www.youtube.com/watch?v=/Z0/csxI-HTs
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Supervised Machine learning in Stata

regress glm elasticnet lasso lasso subset subset subset
e =T
Shrinkage
Map of ML methods and
corresponding Stata Parametric Nonparametric
commands
Global Semig
Power F'r::lje-:t?un Tree-based
series ,‘:,'r_:u'l tn models

Polynomial
and other

Support Generalized
additive

madels

Random
forests

Neural
networks

vector

series machines

npregress series svmachine gam mlp2 ml_stata cwv ml_stata_cv ml_stata_cv regress mkspline npregress series npregress kernel
ml stata cv . pytree pyforest pyadaboost
_ _ semipar 1
pystacked P re miv:tgta ov treeplot pystacked pystacked
—_—— = — rforest boost
pystacked

Giovanni Cerulli. A review of machine learning commands in Stata: Performance and usability evaluation. UK Stata
Conference 2023. https://www.stata.com/meeting/uk23/slides/UK23 Cerulli.pdf

ml stata cv
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Gentle Overview of Deep Learning

Why deep learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the underlying features directly from data’

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1 29
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13



https://www.youtube.com/watch?v=5WoItGTWV54&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=13

Gentle Overview of Deep Learning

My undereducated view on feature levels in time series data

 Low-level features
* Mean, standard deviation, minimum, maximum, skewness, kKurtosis
* Trends like slopes or moving averages, and cyclical/seasonal patterns

 Mid-level features
« Autocorrelation or partial autocorrelation
 Empirical density functions
« Event detection flags e.qg., peaks, anomalies
 Brownian motion of noise behaviors

 High-level features

« Hidden states or latent factors representing the core dynamics of the
series

 Fermi-Dirac superdistribution, Wilson loop perceptron
30
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Why now?

N Neural Networks date back decades, so why the dominance!
1952 Stochastic Gradient
Descent
s || Perceptron |. Big Data 2. Hardware 3. Software
* ek * Larger Datasets * Graphics * |mproved
: * Easier Collection Processing Units Techniques
* & Storage (GPUs) * New Models
1986 Backpropagation " Masswely « Toolboxes
*  Multi-Layer Perceptron Parallelizable
IM.Jf.GE
1995 Deep Convolutional NN
*  Digit Recognition 3 YUY R
- g “-3} i AT»'.:.ii- Y@L
L4 AN B "
. oo TS TensorFlow
v

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Core Foundation

The Perceptron Neural Networks Training in Practice

* Structural building blocks « Stacking Perceptrons to « Adaptive learning
+ Nonlinear activation form neural networks + Batching
functions * Optimization through

. * Regularization
backpropagation

2 % >
#1
xz>2—p-f # 2y » E

Ja
T T

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

The Perceptron: Forward Propagation

Linear combination

1 Output of inputs

: [ R

xlw\ ?=9(W0+inW1)
i=1
X, Non-linear Bias

activation function

Inputs ~ Weights Sum  Non-Linearity Output

The Perceptron: The structural building block of deep learning

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

The Perceptron: Forward Propagation

Activation Functions
1
y = g( Wp +XTW )
/1:2,’,__, y — f ¥ * Example: sigmoid function
X7

1
W, PR Rl R ey
14 1 —
xm I{/
] 5? i
: : i 4
Inputs  Weights Sum  Non-Linearity Output ) il
—IE —-I; = —IZ . Q _I?. 4 ; 4

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

JET

-t
~d

JEF

A5

14

Linear activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called Dense layers

X1
y1=9g(z1)
Zq >
X2
y2 = g(z3)
Z9 >
Xim

7
Z; =Wwy; + Z , 1xj W; i
}:

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Single Layer Neural Network

w®

Final Output
gi=glwe +), 9w
j=1 !

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Deep Neural Network

Zr1
X1
Zy,2 91
xz >< (N ‘ >< >< " ‘ ><
Zk.3 V2
Xm
zk,nk
Inputs Hidden Output
Mp—1
k
Zgi = W(E,[) + Z_f—l .g(zk 1_]) }(;)

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Example Problem: Will | pass this class?

x-» = Hours
spent on the
final project
Legend
@ P

x 1 = Number of lectures you attend

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1 39
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Gentle Overview of Deep Learning

Example Problem: Will | pass this class?

Z
| X
x =[4,5] 2, B Fredicted: 0.1
-
Z3

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

I " X -
2
L(f (x(i); W)’ y('—))

Predicted Actual

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1 41
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Gentle Overview of Deep Learning

Empirical Loss

The empirical loss measures the total loss over our entire dataset

5]
v |
8

Se
I
LTSN

Objective function

Z

47

Z3

b}

f(x)

0.1
0.8
06

X
X
v

1 z n . .
f\|50 known as; /&p](W) — ; L(f(x(l); W)J y(l))

*  Cost function L

* Empirical Risk

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and |

) @
. _ 1 25, 22
45 0.1] %[
X — 2: I : zz . ?1 0.8 x 0
5 B8 06|V | |
X3z : .
ER 4 HEE
Jw) = -l n_ y® log( (x®; W)) + (1 —y®)log (1 — f(x®; W))
Aaal Preclictie Actiil Predicted

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
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Gentle Overview of Deep Learning

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

e
I
LN N

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning
Loss Optimization

We want to find the network weights that achieve the lowest loss

1 n . .
w* = ' —E LIf(x®;w),y®
arggnnn . (f (J: ) y )

W* = argmin J(W)
w

|

Remember:

W = {w(ﬂ}* w,... }

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13

45


https://www.youtube.com/watch?v=5WoItGTWV54&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=13

Gentle Overview of Deep Learning

Loss Optimization

W* = argmin J(W)
w

Remember:

Qur loss is a function of
the network weights!

J(wop, wq) -

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Loss Optimization

Randomly pick an initial (wg, wy)

J(wg, wq) |

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Loss Optimization

aJjW)
aw

Compute gradient,

f(“h:“ﬁ)-

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
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Loss Optimization

Take small step in opposite direction of gradient

J(wp, wq) ‘

Alexander Armr
https://www.youtube.com/watch?v=bWoltGTWV54&list=PL3FW/7Lu3i5JvHMS8L|Y|[-zLTORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Loss Optimization

Repeat until convergence

J(wgp, wq) |

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Gradient Descent

Algorithm
| Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3. Compute gradient, & {:::}

4 Update weights, W « W —n ﬂJ(W}

5. Return weights

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Computing Gradients: Backpropagation

Wl w
- Pz, DN 7 ee—

Jyw) _oyw) o9
sz 6? BWZ

How does a small change in one weight (e.g. W») affect the final loss J(W)

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1 52
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Gentle Overview of Deep Learning

Computing Gradients: Backpropagation

Wq e M , .
X — 7, — §oo—— A

dw) _yw) 3 oz

ow, 09 dz; 0w,

Repeat this for every weight in the network using gradients from later layers

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1 53
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Gentle Overview of Deep Learning

Gradient Descent

Algorithm
. Initialize weights randomly ~V'(0, %)

2. Loop until convergence:

3. Compute gradient, ag::)
4. Update weights, W « W —n af;““:)
5. Return We'ghts o -*__L ~,

Potentially very computationally intensive to compute!

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~M (0, a2)

2. Loop until convergence:

3 Pick batch of B data pDints

4, ajWw) _ 1xp ﬂfk(W)
Compute gradient, === = =21 = - L #
S. Update weights, W « W — naf(m B g ~ |

6. Return weights

Fast to compute and a much better estimate of the true gradient!

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Mini-batches while training

More accurate estimation of gradient
Smoother convergence
Allows for larger learning rates

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU's

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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The Problem of Overfitting

Y
Underfitting ' < Ideal fit = Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Regularization I: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations in layer
* Forces network to not rely on any | node

A AN
S, ' "'.ll' ™ "““q.\_
X/ N — 5
N — ,L \\\\ N X'”\-x,\ ) u/
/ -—-___-_7_--_ 9 -\\\ » i ,f{ .
./ e "N * $2
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Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
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Gentle Overview of Deep Learning

Regularization I: Early Stopping

* Stop training before we have a chance to overfit

&

Under-fitting Over-fitting

Legend

Loss Stop training Testing
" herel i

it Training

- e

Training lterations

Alexander Amini: MIT Introduction to Deep Learning 6.5191: Lecture 1
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL 3FW/L u3i5JvHMS8LjY |-zl fORF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Generative Models
Given training data, generate new samples from same distribution

A r:r.q

Training data ~ p_,.(X) Generated samples ~ p

model )

Want to learn p_ _,.,(X) similar to p,_._(X)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:
- Explicit density estimation: explicitly define and solve forp_ ()

- Implicit density estimation: learn model that can sample from p X) w/o explicitly defining it

model( )

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Gentle Overview of Deep Learning

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc

- Generatlve models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13



https://www.youtube.com/watch?v=5WoItGTWV54&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv&index=13

Gentle Overview of Deep Learning

Generative Al use cases

® Writing or improving content by producing a draft text in a specific style or length

¢ Adding subtitles or dubbing educational content, films, and other content in different
languages

® Qutlining briefs, resumes, term papers, and more

® Receiving a generic code to edit or improve upon

® Summarizing articles, emails, and reports

® Improving demonstration or explanation videos

® Creating musicin a specific tone or style

What Is Generative Al? Definition, Applications, and Impact
https://www.coursera.org/articles/what-is-generative-ai
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Concerns about generative Al

Generative Al’s popularity is accompanied by concerns of ethics, misuse,
and quality control. Because it is trained on existing sources, including
those that are unverified on the internet, generative Al can provide
misleading, inaccurate, and fake information. Even when a source is

provided, that source might have incorrect information or may be falsely
linked.

Since generators such as ChatGPT allow humans to input prompts with
everyday language, it has become easier to use--so much so, that
university students might use it to plagiarize or generate essays, and
content creators may be accused of stealing from original artists. Falsified
information can make it easier to impersonate people for cyber attacks.

What Is Generative Al? Definition, Applications, and Impact
https://www.coursera.org/articles/what-is-generative-ai
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Generative Adversarial Networks (GANSs)
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Generative Adversarial Networks (GANSs)

lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets’, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Output: Sample from

Q: What can we use to
training distribution

represent this complex

transformation?
A: A neural network! Generator
Network
1u
Input: Random noise z

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Generative Adversarial Networks (GANSs)

Real
Real images —— Sample

Fake

— Generator ____»| Sample

Discriminator

SSO|
Jojeulwniasiq

Random input

Overview of GAN Structure
https://developers.google.com/machine-learning/gan/gan structure

SSO|
lojelauan)
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Generative Adversarial Networks (GANSs)

=== Backpropagation
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During discriminator training:

1. The discriminator classifies both real data and fake data from the generator.

2. The discriminator loss penalizes the discriminator for misclassifying a real instance as fake or a fake instance as
real.

3. The discriminator updates its weights through backpropagation from the discriminator loss through the

discriminator network.
The Discriminator

https://developers.google.com/machine-learning/gan/discriminator
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Generative Adversarial Networks (GANSs)

Sample

Y

Real images

—_ Generator » Sample »  Discriminator

SSO|
Jojeulwniosiq

Random input

Y
SS0O|
Jojesauan

O

I Backpropagation

we train the generator with the following procedure:

1. Sample random noise.

2. Produce generator output from sampled random noise.

3. Get discriminator "Real" or "Fake" classification for generator output.

4. Calculate loss from discriminator classification.

5. Backpropagate through both the discriminator and generator to obtain gradients.
6. Use gradients to change only the generator weights.

The Generator
https://developers.google.com/machine-learninag/gan/generator
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Generative Adversarial Networks (GANSs)

Tra|n|ng GANS' TWO_player‘ game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Minimax objective function:

min i [Ex .., 108 D5, (@) + Bxrpte) 108(1 ~ Do, (Go, (2)]
g d

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Generative Adversarial Networks (GANSs)

Tra|n|ng GANS' TWO_player game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emr"’pdata log ng (CB) + ]Ezrvp(z) 108(1 _ ng (Ggg (Z)))]
99 Gd I_I_I L ]

Discriminator output Discriminaltor output for
for real data x generated fake data G(z)

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Generative Adversarial Networks (GANSs)

Tralnlng GANS' TWO_player game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emr"’pdata log ng (CE) + ]Ezrvp(z) ]Og(l - ng (Ggg (Z)))]
99 gd I_I_I L ]

Discriminator output Discriminaltor output for
for real data x generated fake data G(z)

Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

Generator (0 g) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Generative Adversarial Networks (GANSs)

Training GANs: Two-player game  Aaesara v, nszots
Minimax objective function:

r%in max [Ewwpdam log Dy, (2) + Eznp(z) log(1 — Dg, (G, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

rré_a'x [EmNPdata 10g ng (x) + EZNP(Z) log(l - ng (Ggg (z)))]
d

2. Gradient descent on generator
I%in Ezmp(z) log(l - D9d (Gﬁ'g (Z)))

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Generative Adversarial Networks (GANSs)

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014
Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(V),..., (™)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

m

Vou- 3 [108 Do, (=) + l0g(1 — Dy, (Go, (z)))]

i=1

end for
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p,(2).
e Update the generator by ascending its stochastic gradient (improved objective):

m

Vo, ~ 3" log(De,(Ga, ()

end for

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017)
https://www.youtube.com/watch?v=5WoltGTWV54&list=PL3FW/Lu3i5JvHMS8L|Y|-zLTQRF3EO8sYv&index=13
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Generative Adversarial Networks (GANSs)

Pros and cons of GANSs

Advantages of GANs

GANs are considered unsupervised learning models,
continuing to train themselves after the initial input and
capable of learning from unlabeled data.

GANs are capable of identifying anomalies based on
measurements that indicate how well the generator and
discriminator are able to model the data.

Ability to create realistic data samples

What is GAN? Generative Adversarial Networks Explained
https://www.coursera.org/articles/what-is-gan

Disadvantages of GANs

They can be difficult to train due to the need for large,
varied, and advanced data sets.

It can be challenging to evaluate results depending on
the complexity of a given task.

GANs suffer from mode collapse, or learning to
produce only one output due to its high plausibility
and ability to trick the discriminator.
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Generative Adversarial Networks (GANSs)

See also: https://github.com/soumith/ganhacks for tips

“The GAN ZOO” and tricks for trainings GANs

= Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
s C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

= GAN - Generative Adversarial Networks

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks s CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

+ AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs = CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

« AdaGAN - AdaGAN: Boosting Generative Models « DTN - Unsupervised Cross-Domain Image Generation

« AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets * DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. % » DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution g :

* DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

* AL-CGAN - Learning to Generate Images of Qutdoor Scenes from Attributes and Semantic Layouts -« DGRIGAN - DUSIGAR: Utistoeriesd Dual Learwing 16¢ e io-iiinge Trurelation

* ALl - Adversarially Learned Inference » EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization « f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
* AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs * GAWWN - Learning What and Where to Draw

s GeneGAN - GeneGAN: Learning Cbject Transfiguration and Attribute Subspace from Unpaired Data
* Geometric GAN - Geometric GAN
s GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

s b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks
+ Bayesian GAN - Deep and Hierarchical Implicit Models

* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks o GH-GAN - GP-GAN: Towards Realistic High-Reackition image Blanding
» BiGAN - Adversarial Feature Learning « IAN - Neural Photo Editing with Introspective Adversarial Networks

« BS-GAN - Boundary-Seeking Generative Adversarial Networks s iGAN - Generative Visual Manipulation on the Natural Image Manifold
« CGAN - Conditional Generative Adversarial Nets * IcGAN - Invertible Conditional GANs for image editing

A : : i i : : 5 = ID-CGAN -1 De-raining Usi Conditional Ge tive Ad ial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters iR b e e

" 3 : s Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks " ¢ " o

- . : y - ' g * InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks s LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
« CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

* CoGAN - Coupled Generative Adversarial Networks s LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Fei-Fei Li: Lecture 13 Generative Models, Convolutional Neural Networks for Visual Recognition (Spring 2017) 76
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ABSTRACT

When researchers develop new econometric methods it is common practice to compare
the performance of the new methods to those of existing methods in Monte Carlo
studies. The credibility of such Monte Carlo studies is often limited because of the
discretion the researcher has in choosing the Monte Carlo designs reported. To improve
the credibility we propose using a class of generative models that has recently been
developed in the machine learning literature, termed Generative Adversarial Networks
(GANs) which can be used to systematically generate artificial data that closely mimics
existing datasets. Thus, in combination with existing real data sets, GANs can be used
to limit the degrees of freedom in Monte Carlo study designs for the researcher, making
any comparisons more convincing. In addition, if an applied researcher is concerned
with the performance of a particular statistical method on a specific data set (beyond
its theoretical properties in large samples), she can use such GANs to assess the
performance of the proposed method, e.g. the coverage rate of confidence intervals or
the bias of the estimator, using simulated data which closely resembles the exact setting
of interest. To illustrate these methods we apply Wasserstein GANs (WGANs) to the
estimation of average treatment effects. In this example, we find that (i) there is not a
single estimator that outperforms the others in all three settings, so researchers should
tailor their analytic approach to a given setting, (ii) systematic simulation studies can be
helpful for selecting among competing methods in this situation, and (iii) the generated
data closely resemble the actual data.

© 2021 Elsevier B.V. All rights reserved.

Athey, S., Imbens, G.W., Metzger, J. and Munro, E., 2021. Using Wasserstein Generative Adversarial Networks for the design of Monte

Carlo simulations. Journal of Econometrics, p.105076.
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Time-series Generative Adversarial Networks

Table 1: Results on Autoregressive Multivariate Gaussian Data (Bold indicates best performance).

Daniel Jarrett*
University of Cambridge, UK

Jinsung Yoon*

University of California, Los Angeles, USA | Temporal Correlations (fixing o = 0.8) || Feature Correlations (fixing ¢ = 0.8)

jsyoon0823@g.ucla.edu daniel. jarrett@maths.cam.ac. Settings | ¢ —0.2 | ¢ = 0.5 ‘ gb =0.8 ” o=0.2 ‘ o=0.5 | og=0..8
Mihaela van der Schaar Discriminative Score (Lower the better)
Univer;f;;i‘;;“ggi F(}frgiaamllj(;isdi%g[illés USA TimeGAN | .1754.006 | .174+.012 | .105+.005 || .181+.006 | .152+.011 | .105+.005
Alan Turing Institute, UK RCGAN A177+.012 | .190£.011 | .1334£.019 || .186£.012 | .1904.012 | .133+.019
mv472Qcam. ac.uk, mihaelaQee.ucla.edu C-RNN-GAN | .391+£.006 | .2274£.017 | .220+.016 || .1984+.011 | .202+.010 | .220+.016
T-Forcing S500+£.000 | .500£.000 | .499+.001 499£.001 | .4994.001 | .499+.001
Abstract P-Forcing | .498+.002 | .472+.008 | .396+.018 || .460£.003 | .408+.016 | .396+.018
WaveNet 337+£.005 | .2354+.009 | .229+.013 || .217+.010 | .226+£.011 | .229+.013
A good generative model for time-series data should preserve temporal dynamics, WaveGAN | .336+.011 | .2134+.013 | .2304.023 192+.012 | .2054+.015 | .230+.023
in the sense that new sequences respect the original relationships between variables —
across time. Existing methods that bring generative adversarial networks (GANs) Predictive Score (Lower the better)
into the sequential setting do not adequately attend to the temporal correlations 3
unique to time-series data. At the same time, supervised models for sequence TimeGAN .640+.003 | .412+.002 251+.002 282+.005 | .261+0.002 | .2514+.002
prediction—which allow finer control over network dynamics—are inherently RCGAN .652+.003 | .4354+.002 .263+.003 292+.003 | .2794+.002 | .2634.003
deterministic. We propose a novel framework for generating realistic time-series C-RNN-GAN | .696+.002 | .490-4+.005 290-+-.002 2034005 | 280+.006 | .299+.002
data that combines the flexibility of the unsupervised paradigm with the control :
afforded by supervised training. Through a learned embedding space jointly T—Forc%ng 737+.022 | 732+£.012 | .5034.037 || .515£.034 | .5434+.023 | .503+.037
optimized with both supervised and adversarial objectives, we encourage the P-Forcing .665+.004 | .571+.005 | .289+.003 406=£.005 | .317£.001 | .289+.003
network to adhere to the dynamics of the training data during sampling. Empirically, WaveNet J18+.002 | .5084.003 | .3214.005 331+£.004 | .2974.003 | .321+£.005
we evaluate the ability of our method to generate realistic samples using a variety of WaveGAN 7124-.003 | .4894+.001 200+.002 3254003 | .3534+.001 | .290+.002
real and synthetic time-series datasets. Qualitatively and quantitatively, we find that
the proposed framework consistently and significantly outperforms state-of-the-art
benchmarks with respect to measures of similarity and predictive ability. 30

Yoon et al. 2019. Time-series Generative Adversarial Networks. 33rd Conference on Neural Information Processing Systems (NeurlPS 2019)
https://proceedings.neurips.cc/paper files/paper/2019/file/c9efe5f26cd1/bab216bbe?2a/d26d490-Paper.pdf
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Time-series Generative Adversarial Networks

Daniel Jarrett*
University of Cambridge, UK
daniel. jarrett@maths.cam.ac.u’

Jinsung Yoon*
University of California, Los Angeles, USA
jsyoon0823@g.ucla.edu

Table 2: Results on Multiple Time-Series Datasets (Bold indicates best performance).

Mihaela van der Schaar Metric | Method | Sines | Stocks | Energy | Events
University of Cambridge, UK -
UnlverSItl;‘l\;?rga};lfqornlaaljll_‘gls i?]geles, USA TlmeGAN -011:':.008 0102:|:0021 0236:|:0012 0161 :|:.018
Alan Turing Institute, UK RCGAN 022+.008 | .196£.027 | .336+.017 | .380£.021
mv4720cam.ac.uk, mihaelafee.ucla.edu Discriminative C-RNN-GAN | .229£.040 | .399+£.028 | .499+.001 462+.011
Score T-Forcing 495+.001 226+.035 | 483+£.004 | .387%.012
Abstract P-Forcing 430+.027 | 257£.026 | .412+.006 | .489£.001
(Lower the Better) WaveNet 158+.011 .232+.028 397+.010 385+.025
A good generative model for time-series data should preserve temporal dynamics, WaveGAN 277+.013 217+.022 363+.012 357+.017
in the sense that new sequences respect the original relationships between variables -

across time. Existing methods that bring generative adversarial networks (GANSs) TimeGAN .093+.019 .038-+.001 273+.004 .303-£.006
into the sequential setting do not adequately attend to the temporal correlations RCGAN .097+.001 .040+.001 .292+.005 345+.010
unique to time-series data. At the same time, supervised models for sequence Predictive C-RNN-GAN 127-+.004 038=+.000 4834+.005 360+.010

prediction—which allow finer control over network dynamics—are inherently . ’ ’ ) : ’ ’ ’ ’
deterministic. We propose a novel framework for generating realistic time-series Score T—ForC}ng 150+.022 -038-.001 315+.005 :310+.003
data that combines the flexibility of the unsupervised paradigm with the control P-Forcing 116£.004 .043£.001 .303£.006 .320£.008
afforded by supervised training. Through a learned embedding space jointly (Lower the Better) WaveNet 117+.008 .042+.001 311+.005 .333+.004
optimized with both supervised and adversarial objectives, we encourage the WaveGAN 1344+.013 041+.001 307+.007 3244+ .006

network to adhere to the dynamics of the training data during sampling. Empirically, i i i i i i i i
we evaluate the ability of our method to generate realistic samples using a variety of | Original ‘ .094+.001 ‘ .036+£.001 ‘ .2504.003 ‘ .293+.000

real and synthetic time-series datasets. Qualitatively and quantitatively, we find that
the proposed framework consistently and significantly outperforms state-of-the-art
benchmarks with respect to measures of similarity and predictive ability.

31

Yoon et al. 2019. Time-series Generative Adversarial Networks. 33rd Conference on Neural Information Processing Systems (NeurlPS 2019)
https://proceedings.neurips.cc/paper files/paper/2019/file/c9efe5f26cd1/bab216bbe?2a/d26d490-Paper.pdf
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GENERATIVE ADVERSARIAL NETWORKS IN FINANCE:
AN OVERVIEW

A PREPRINT
Florian Eckerli * Joerg Osterrieder* )
School of Engineering School of Engineering Table 1: GANSs in finance research
Zurich University of Applied Sciences Zurich University of Applied Sciences . . ..
Winterthur, Switzerland Winterthur, Switzerland Field Application Method
e.florian@hotmail.com joerg.osterrieder@zhaw.ch . . . . . y ~
Joers Time Series Forecasting  Market Prediction GAN-FD [9], ST-GAN [19],
The Hightech Business and Entrepreneurship Group MTSGAN [20]

Faculty of Behavioural, Management and Social Sciences
University of Twente

Enschede, Netherlands Fine-Tuning of trading models C-GAN [10], MAS-GANJ21]
joerg.osterrieder@utwente.nl
Portfolio Management Porfolio Optimization PAGAN[11], GAN-MP[22],
DAT-CGAN|[23], CorrGAN[12]
June 11, 2021
Time Series Generation  Synthetic time series generation and TimeGAN[24], WGAN-GP[25],

ABSTRACT Finance Data Augmentation FIN-GAN[3], Quant GAN[14],
Modelling in finance is a challenging task: the data often has complex statistical properties and its RA-GAN [26]> CDRAGAN[QT],
inner workings are largely unknown. Deep learning algorithms are making progress in the field of SigCWGAN][28], ST-GAN[19]

data-driven modelling, but the lack of sufficient data to train these models is currently holding back
several new applications. Generative Adversarial Networks (GANs) are a neural network architecture
family that has achieved good results in image generation and is being successfully applied to generate
time series and other types of financial data. The purpose of this study is to present an overview of

how these GANs work, their capabilities and limitations in the current state of research with financial Detection of Credit Card Fraud RWGAN [29] LSTM-G AN—2[30]
data and present some practical applications in the industry. As a proof of concept, three known :

Fraud Detection Detection of market manipulation LSTM-GAN][13]

GAN architectures were tested on financial time series, and the generated data was evaluated on its
statistical properties, yielding solid results. Finally, it was shown that GANs have made considerable
progress in their finance applications and can be a solid additional tool for data scientists in this field.

Keywords Generative Adversarial Networks, GANs, Time Series, Synthetic Data
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ABSTRACT

Generative adversarial networks (GANs) studies have grown exponentially in the past few years.
Their impact has been seen mainly in the computer vision field with realistic image and video
manipulation, especially generation, making significant advancements. While these computer vision
advances have garnered much attention, GAN applications have diversified across disciplines such
as time series and sequence generation. As a relatively new niche for GANS, fieldwork is ongoing
to develop high quality, diverse and private time series data. In this paper, we review GAN variants
designed for time series related applications. We propose a taxonomy of discrete-variant GANs and
continuous-variant GANs, in which GANs deal with discrete time series and continuous time series
data. Here we showcase the latest and most popular literature in this field; their architectures, results,
and applications. We also provide a list of the most popular evaluation metrics and their suitability
across applications. Also presented is a discussion of privacy measures for these GANs and further
protections and directions for dealing with sensitive data. We aim to frame clearly and concisely the
latest and state-of-the-art research in this area and their applications to real-world technologies.

Medical/Physiological
Generation

LSTM-LSTM, [631,

(641, [83], [50]
LSTM-CNN, [71] [68]
BiLSTM-CNN, [69]
BiGridLSTM-CNN, [57]

EEG, ECG, EHRs,
PPG, EMG, Speech,
NAF, MNIST, Syn-
thetic sets

TSTR, MMD, Recon-
struction error, DTW,
PCC, IS, FID, ED, S-
WD, RMSE, MAE, FD,
PRD, Averaging Sam-

CNN-CNN, [86], [87] ples, WA, UAR, MV-
AE-CNN, [88] DTW
FCNN [89]
Financial time series TimeGAN [21] S&P500 index (SPX), Marginal Distributions,
generation/prediction SigCWGAN [53] Dow Jones Index (DJI), Dependencies, TSTR,
DAT-GAN [56] ETFs Wasserstein  Distance,
QuantGAN [46] EM distance, DY Met-
ric, ACF score, leverage
effect score, discrimi-
native score, predictive
score
Time series Estima- LSTM-NN [73] Meteorological data, RMSE, MAE, NS, WI,
tion/Prediction LSTM-CNN [74] Truven  MarketScan LMI
LSTM-MLP [74] dataset
Audio Generation C-RNN-GAN [48] Nottingham  dataset, Human perception,

TGAN (variant) [81]

Midi music files,
MIR-1K, TheSession,
Speech

Polyphony, Scale Con-
sistency, Tone Span,
Repetitions, = NSDR,
SIR, SAR, FD, t-SNE,
Distribution of notes

Time series Imputa-
tion/Repairing

RNN-FCN [90]
DCGAN (variant)
CNN-CNN [[72]
MTS-GAN [[73]

CNN-CNN
DCGAN variant [92]
AE-GRUI [93]]
RGAN [04]
FCN-FCN [93]
GRUI-GRUI [96]

TEP, Point Machine,
Wind Turbin data,
PeMS, PhysioNet
Challenge 2012, KDD
CUP 2018, Parking lot
data,

Visually, MMD, MAE,
MSE, RMSE, MRE,
Spatial Similarity, AUC
score

Anomaly Detection

LSTM-LSTM [78]

SET50, NYC Taxi data,

Manipulated data used

LSTM-(LSTM&CNN) ECG, SWaT, WADI as a test set, ROC Curve,
Keywords Generative Adversarial Networks - Time Series - Discrete-variant GANs - Continuous-variant GANs LSTM-LSTM (MAD-GAN) Precision, Recall, Fl,
[770 Accuracy
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Fin-GAN: forecasting and classifying financial time
series via generative adversarial networks

MILENA VULETIC*#+, FELIX PRENZEL+ and MIHAI CUCURINGU+ £ Table 2. Summary of performance metrics over the models across the stocks and ETFs.

‘tMathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Rd, Oxford, OX2 6GC el Lo — LS L e Long-only

+Oxford-Man Institute of Quantitative Finance, University of Oxford, Eagle House, Walton Well Rd, Oxfor

§Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, UK Mean SR 0.540 0.033 0.467 0.341 0.206 0.182
{The Alan Turing Institute, 96 Euston Rd, London, NW1 2DB, UK Median SR 0.413 -0.092 0.214 0.170 0.204 0.194
Portfolio SR 2.107 0.172  2.087 0.942 0.612 0.618
(Received 18 January 2023; accepted 16 December 2023; published online 31 January 2024) Mﬂﬂlf] PnL 2978 0.25 4.123 2.361 2.059 2.350
Median PnL 1.890) -0.673 1.959 1.735 2.245 1.975
We investigate the use of Generative Adversarial Networks (GANs) for probabilistic forecasting Mﬂal_:] MAE 0.044 0.052 0.007 0.007 0.007
of financial time series. To this end, we introduce a novel economics-driven loss function for the Median MAE 0.008 0.009 0.007 0.007 0.007
gegcrelltor. Tlt],is nc'wly designcd' Io;slfunc‘tion rcnfjcrs Gl.?le mo(rje s'uita?lTl for ad'cl‘assi?calic;)n t:dlsk Mean EMSE 0.049 0.056 0.012 0.012 0.012
and places them into a supervised learning setting, whilst producing full conditional probability .
distributions of price returns given previous historical values. Our approach moves beyond the point Median RMSE 0.012 0.014 0.011 0.011 0.011
estimates traditionally employed in the forecasting literature, and allows for uncertainty estimates.
Numerical experiments on equity data showcase the effectiveness of our proposed methodology, Notes: SR refers to the annualized Sharpe Ratio, and PnL refers to the mean daily PnL.. MAE
which achieves higher Sharpe Ratios compared to classical supervised learning models, such as .
LSTMs and ARIMA. and RMSE represent the mean absolute error and the mean root squared error, respectively.

Keywords: GANs; Financial returns; Time series forecasting; Classification nghhghtﬂd are the b-ES[-pEl'fﬂl'ﬂ'llIlg results i':lCC(Jl'dl[]g to each metric.

JEL Classifications: G17, C15, C22, C32, C45, C53

Vuleti¢ et al., 2024. Fin-GAN: Forecasting and classifying financial time series via generative adversarial networks. Quantitative
Finance, pp.1-25.
https://www.tandfonline.com/doi/pdf/10.1080/14697688.2023.2299466 84
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GAN architecture
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Figure 3: The diagram illustrates the architecture of the generator G and discriminator D for retrodiction in a Wilson loop generative adversarial network8 ét
incorporates the loss function derived from the prediction of DM statistics for null hypothesis testing.
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 Data Augmentation

* Increasing the amount of training data can improve model
accuracy, especially when real data is limited.

* For example, it can be used to study consumer behavior and
forecasting, or financial time series data.

39
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« Synthetic Control Group

e Synthetic control groups can be created when there is no
actual control group.

* This can help create balanced datasets to analyze the impact
of policies.

« For example, Professor Susan Athey's research (Athey, S.,
Imbens, G.W., Metzger, J. and Munro, E., 2021) applied GANs
to various imbalanced data sets, both in terms of sample size

(N) and observable characteristics.
90
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 Analyzing Complex Economic Relationships

« GANSs can be used to analyze complex economic relationships,
such as nonlinear relationships between economic variables.

* They can also be used to analyze the impact of social networks
and behavior on economic decisions.

* Research on developing GANSs for nonlinear causal
relationships is growing.

91
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* Synthetic Data for Privacy Protection

e Synthetic data can be created to protect privacy, especially
when data is sensitive or confidential.

 For example, this can be used in research that requires access
to population-level health or financial data.

92
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Software

Pytorch, e.g. StudioGAN

https://pytorch.org/tutorials/beginner/dcgan faces tutorial.html
https://www.coursera.org/specializations/generative-adversarial-networks-gans

* % 3k ok Xk

R, e.g. RGAN
https://cran.r-project.org/web/packages/RGAN/RGAN.pdf

MATLARB, e.g. dlarray, dlnetwork, Matlab-GAN
https://www.mathworks.com/help/deeplearning/ug/train-generative-adversarial-
network.html

https://www.mathworks.com/matlabcentral/fileexchange/74865-matlab-gan

Tensorflow
https://github.com/tensorflow/gan

93
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Hardware

GPU - Graphics Processing Unit

Most important hardware for training GANs

Designed for parallel processing - computationally intensive tasks involved in training deep
learning models

Parallel training on a single system and several GPUs

CPU - Central Processing Unit

Data preprocessing and feeding data to the GPU

RAM: Random Access Memory

(Virtually) store the data that is being processed by the CPU and GPU

Storage, e.g. HDD, SDD, cloud

Solid-state drives (SSDs) are recommended for faster data access times

94
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 Concluding Remarks

« GANs are a powerful tool for economic research, offering solutions for
data scarcity and enhancing research methods.

* They can generate synthetic data, create counterfactuals, and address
selection bias.

« Research on GANs in economics is a growing field with continuous
advancements.

« GANs are a promising tool for economic research with the potential to
address various challenges and improve the accuracy and efficiency of
economic analysis.
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